A teacher investigates how the rate of reaction between magnesium and excess sulphuric acid changes as the concentration of the acid changes.
The word equation for the reaction is:

$$
\text { magnesium }+ \text { sulphuric acid } \rightarrow \text { magnesium sulphate }+ \text { hydrogen }
$$

The method she follows is:

- add concentrated sulphuric acid to water to make acid of the required concentration
- use a measuring cylinder to pour $25 \mathrm{~cm}^{3}$ of the diluted acid into a boiling-tube
- add magnesium to the boiling-tube and collect the gas produced as shown
- measure the volume of gas collected after 20 seconds.

(a) State one change that could be made to the apparatus that would give more accurate results.
- Use pipette/burelte (to measure acid volume)
- collect gas in syringe/burette
(accept Idea of sealed system eg
partitioned flask on tube in flask) t t
(b) The diagram shows the level of water in the measuring cylinder after one run.

What volume of gas has been collected?

$$
37\left(\mathrm{~cm}^{3}\right)
$$

(c) On what property of hydrogen does this method of gas collection depend?
 with water
(d) The teacher notices that the boiling-tube felt hot after the reaction.

She repeats the experiment and uses a thermometer to measure the temperature change of the reaction mixture.
(i) The diagrams show the thermometer readings before and after the reaction.

Record the temperatures shown in the diagrams.

Before

Temperature before $22 \cdot 5$ ${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C} \quad$ Temperature after $38 \cdot 5$ ${ }^{\circ} \mathrm{C}$

After

(ii) Calculate the temperature change.

(g) The rate of the reaction can be calculated using the equation:

$$
\text { rate }=\frac{\text { total volume of gas collected }}{\text { total time taken to collect gas }}
$$

The rate of reaction at each concentration is:

Concentration (\%)	Rate
0	0.00
10	2.35
15	3.12
20	3.67
30	3.25
40	2.40
50	1.70
60	1.20

(i) Place a cross (\mathbb{X}) in one box to show the correct units for the rate in this experiment.

$$
\begin{array}{ll}
\mathrm{cm} / \mathrm{s} & \square \\
\mathrm{~cm}^{3} / \mathrm{s} & \boxtimes \\
\mathrm{~s} / \mathrm{cm}^{3} & \square \\
\mathrm{~s}^{3} / \mathrm{cm} & \square
\end{array}
$$

(ii) Plot a graph of rate of reaction against concentration.

Draw two curved lines of best fit, one for the points from 0% to 20% and one for the points from 30% to 60%.
Extend the curved lines so that they cross.
rate of reaction

(4)
(h) (i) Use your graph to determine the highest rate, and the concentration of acid that will give this rate.

(ii) Use your answers to (h)(i) to calculate the volume of gas that would be collected in 20 seconds at this concentration.

(iii) What further practical work would you do to check the accuracy of your calculated volume in (h)(ii)?

- repeat experiment using same concentrations
- measure gas volume collected

$$
\begin{equation*}
\text { (} \ln 20 \text { seconds) } \tag{2}
\end{equation*}
$$

(Total 23 marks)
TOTAL FOR PAPER: 50 MARKS
END
2.) Malachite chips, containing copper(II) carbonate, react with hydrochloric acid.

Some students investigate the effect of changing the concentration of acid on the rate of the reaction. They use this method.

The balance shows the loss in mass as carbon dioxide gas is given off.
After 1 minute the reading on the balance is recorded.
Some students repeat the experiment at the same temperature using acid with the same volume but a different concentration.
(a) Suggest two features of the malachite chips that need to be the same to ensure that the experiment is a fair test.
1 mass/werght/number of moles
2 surface area / size. (of chips)
(2)
(b) The teacher gave four students some dilute hydrochloric acid that was labelled 100%. They did some experiments using different dilutions of this acid. They wrote down these results.

Student 1 When the concentration of acid was 100% the reading on the balance was -1.12 grams after 1 minute

Student 2 The flask lost 0.87 g in one minute when I used 75% hydrochloric acid

Student 3 The mass of gas given off was 0.62 g when there were no more bubbles coming from the malachite chips and the acid was 50\%

Student $4 \quad 0.24$ grams of carbon dioxide were given off in 60 seconds when the acid concentration was 25%
(i) Which student wrote down results that cannot be compared with the other three? Explain your choice.
\qquad
Explanation ...did not do expt for 1 minute/ded
not record time/warted for bubbles stop / wasted for reaction to end.
(ii) Draw a suitable table using column headings that show what was recorded, with units. Enter the three results that can be used.

Concentration (of aud) $(\%)$	Mass of gas lost (${ }^{(4)}$	
100%	1.12	
75%	0.87	
25%	0.24	

(c) Another group of students repeated the experiment, but using a mixture of sulphuric acid and water instead of hydrochloric acid.
The table shows the results obtained by the students.

Mass of carbon dioxide given off $\mathbf{(g)}$	0.20	0.27	0.44	0.54	0.60	0.67
Volume of sulphuric acid $\left(\mathbf{c m}^{\mathbf{3}}\right)$	30	40	50	80	90	100
Volume of water $\left(\mathbf{c m}^{\mathbf{3}}\right)$	70	60	50	20	10	0
Concentration of acid (\%)	30	40	50	80	90	100

(i) Choose a suitable scale for the mass of carbon dioxide given off.

(ii) Circle on the graph one result that is anomalous.
(iii) Suggest two errors in the experiment that may have caused this anomalous result.
1... Cotton wool mot put in flask /a ad spray
escaped/ acid too concentrated/teo
2 much aced//temp too high././gas collected (onger than I minute malachite pres smaller (cr larger surface area) ${ }^{2}$ (2)

Abstract

Plot these results on the grid below and draw the line of best fit.

(iv) Use your graph to estimate the mass of carbon dioxide given off when the acid concentration is 70%. Show on your graph how you have obtained your answer.
heed lines on graphs

$$
\begin{equation*}
0,46-0.48 \text { allowed } \tag{2}
\end{equation*}
$$

(d) (i) Describe the relationship between the mass of carbon dioxide given off in one minute and the concentration of the acid.

- man of CO_{2} increases as the concentration .increases
- directly proportionally / mass doubli(2)
(ii) Give an explanation for this relationship. as cone. doubles
- more collisions between pantiles
\qquad
- connect reference to frequency.
....or time \qquad
egg. "Collisions are more frequent"
(Total 21 marks)
or "more collusions in a given time"

